
Evelyn Documentation
Release 0.0.0

Philip Wood

Jan 13, 2019

Getting started

1 Overview 1

2 Getting the code 3
2.1 Using HTTPS . 3
2.2 Using SSH . 3

3 Running Evelyn 5
3.1 Prerequisites . 5
3.2 Running in Docker using the command line . 5
3.3 Running in Docker using Visual Studio . 5

4 Using Evelyn 7
4.1 Accessing the REST Server . 7
4.2 Using the Client . 9
4.3 Changing toggle state . 10

5 Using the management UI 11

6 Building the code 13
6.1 Building on the command line . 13
6.2 Building in Visual Studio . 13

7 Introduction 15

8 This documentation 17

i

ii

CHAPTER 1

Overview

You probably want to see Evelyn in action. In this section we’ll describe how to get the code, build and run it.

This shouldn’t take more than a few minutes.

1

Evelyn Documentation, Release 0.0.0

2 Chapter 1. Overview

CHAPTER 2

Getting the code

The Evelyn repository is hosted on Github. You can clone the repo with one of the following commands:

2.1 Using HTTPS

git clone https://github.com/binarymash/evelyn.git

2.2 Using SSH

git clone git@github.com:binarymash/evelyn.git

We use GitFlow branching; development occurs on the default develop branch, and stable releases are on the master
branch.

3

https://github.com/binarymash/evelyn
https://nvie.com/posts/a-successful-git-branching-model/

Evelyn Documentation, Release 0.0.0

4 Chapter 2. Getting the code

CHAPTER 3

Running Evelyn

The repository contains a sample server host and client application, and configuration for Docker to run these using
EventStore as our event store. You can run these on the command line, or in Visual Studio.

3.1 Prerequisites

• Docker is installed on your computer. Note that if you’re already running in a virtualised environment - for
example, Windows running in Parallels on a Mac, then you probably can’t use the docker files as Docker doesn’t
play nicely with nested virtualisation.

3.2 Running in Docker using the command line

Run the ./runSample.ps1 script. This will kick off Cake scripts which will build and then run the Docker
containers.

3.3 Running in Docker using Visual Studio

Ensure that the startup project is docker-compose, then run the solution.

5

https://www.docker.com/
https://eventstore.org/
https://www.docker.com/

Evelyn Documentation, Release 0.0.0

6 Chapter 3. Running Evelyn

CHAPTER 4

Using Evelyn

We’ll assume that you’ve got the sample client and server running. Now let’s try to do something with it.

4.1 Accessing the REST Server

The Evelyn REST API endpoints are specified using OpenAPI and documented using using Swagger UI. By default,
the sample server host is configured to allow us to access port 2316, and so we can inspect the API in a browser by
navigating to http://localhost:2316/swagger/.

7

https://www.openapis.org/
https://swagger.io/tools/swagger-ui/

Evelyn Documentation, Release 0.0.0

If you don’t see this, it might be because something else is already using port 2316. If this is the case, you’ll need
to modify the port forwarding configuration for evelyn-server-host in ./src/docker-compose.yml to specify a
different port.

When the server runs for the first time, it will set up a default account for us and add create some sample data to get
us started. Lets check it is all set up correctly:

• In Swagger UI, expand the GET /api/projects section

• Click the Try it out button

• Click the Execute button

In Evelyn, a project is a logical collection of feature toggles and environments. The /api/projects endpoint
returns us a list of all the projects on our account. When we click the Execute button, Swagger will make a call to this
endpoint. The response should look something like this:

{
"accountId": "e70fd009-22c4-44e0-ab13-2b6edaf0bbdb",
"projects": [

{
"id": "8f73d020-96c4-407e-8602-74fd4e2ed08b",
"name": "My First Project"

}
],
"created": "2018-05-27T15:58:13.6253741+00:00",
"createdBy": "SystemUser",
"lastModified": "2018-05-27T15:58:30.7611496+00:00",
"lastModifiedBy": "SystemUser",
"version": 1

}

8 Chapter 4. Using Evelyn

Evelyn Documentation, Release 0.0.0

We can see here that our account ID is e70fd009-22c4-44e0-ab13-2b6edaf0bbdb, and we have a project
called My First Project which has the ID 8f73d020-96c4-407e-8602-74fd4e2ed08b.

Now we know the ID of the project, lets now get more details about it:

• Expand the GET /api/projects/{id} section

• Click the Try it out button

• In the id input box, enter the id of the project, 8f73d020-96c4-407e-8602-74fd4e2ed08b

• Click the Execute button

The response should look something like this:

{
"id": "8f73d020-96c4-407e-8602-74fd4e2ed08b",
"name": "My First Project",
"environments": [

{
"key": "my-first-environment"

}
],
"toggles": [

{
"key": "my-first-toggle",
"name": "My First Toggle"

}
],
"created": "2018-05-27T15:58:30.7715006+00:00",
"createdBy": "SystemUser",
"lastModified": "2018-05-27T15:58:30.8970043+00:00",
"lastModifiedBy": "SystemUser",
"version": 2

}

We can see that the project has a single environment, my-first-environment and has one toggle,
my-first-toggle.

So far so good. Now lets turn our attention to the client.

4.2 Using the Client

An application that uses the Evelyn client must be configured to connect to the server to retrieve the current toggle
states for a particular enviroment and project.

The sample client host is already configured to get the toggle state for the sample project and environment that was
created when we started the server; you can find this configuration in .\src\Evelyn.Client.Host\Startup.
cs. Note that in this class we also start a background service, which is used to poll the server for the current state.

Now, take a look in the ClassWithToggle class. You’ll see we’re injecting an IEvelynClient in the construc-
tor. This interface lets us access the toggle states for our chosen environment. We use the GetToggleState method
on this interface to get the current state of our my-first-toggle toggle, and then use this to decide which block
of code to execute.

Look at the logging output from sample - if you’re using Visual Studio this will be in in the Output window, or if
you’re running on the command line it’ll be directly in your shell. You should see something like this. . .

4.2. Using the Client 9

Evelyn Documentation, Release 0.0.0

This code is only called when the toggle is OFF.

It’s clear from this that our execution path is currently that specified for when the toggle is turned off.

4.3 Changing toggle state

Now, lets change the state of our toggle. We can do this either through the Swagger UI or via the Evelyn Management
UI (if you’ve set it up):

4.3.1 Changing toggle state in Swagger UI

• Expand the POST /api/projects/{projectId}/environments/{environmentKey}/toggles/{toggleKey}/change-state
section

• Click the Try it out button

• In the projectId input box, enter the id of the project, 8f73d020-96c4-407e-8602-74fd4e2ed08b

• In the environmentKey input box, enter the key of our environment, my-first-environment

• In the toggleKey input box, enter the key of our toggle, my-first-toggle

• In the message Body input box, enter this:

{
"expectedToggleStateVersion": 0,
"state": "True"

}

• Click the Execute button

4.3.2 Changing toggle state in Evelyn Management UI

• From the dashboard, select My First Project

• Select my-first-environment from the list of environments

• Find my-first-toggle in the list of toggles, and click its icon to change the state from OFF to ON

Now look at the logs again. . . .

This code is only called when the toggle is OFF.
Toggle state has changed.
This code is only called when the toggle is ON.

Now, we’re going through the other code block! So, in changing the toggle state, we’ve changed the behaviour of our
application.

10 Chapter 4. Using Evelyn

CHAPTER 5

Using the management UI

The Swagger UI is convenient for us as developers, but not particularly great for end users. Happily, Evelyn also has
a management application that we can use to manage our toggles.

The code for the management UI is in a separate repository. If you’ve not already had a look, now might be a good
time - Read the docs.

11

https://github.com/binarymash/evelyn-management-ui
https://evelyn-management-ui.readthedocs.io/en/latest/

Evelyn Documentation, Release 0.0.0

12 Chapter 5. Using the management UI

CHAPTER 6

Building the code

Evelyn can be built on the command line on any environment that supports the .NET Core SDK and, if you’re running
on Windows, in any version of Visual Studio 2017.

6.1 Building on the command line

This project has automated build scripts that will compile the code and run the test suite. The build scripts are written
using Cake. These scripts can be used by developers, and are also used in the project’s build and release pipeline in
AppVeyor.

• Ensure that you have the latest .NET Core SDK installed

• Run the appropriate build script for your development environment

– ./build.ps1 (Powershell)

– ./build.sh (Linux/macOS shell)

The build will take a few moments. The outputs of the build (nuget packages, test results etc) will be published to the
./artifacts folder. You might need to have administrator rights to run some of the tests.

6.2 Building in Visual Studio

• Open Visual Studio 2017 with administrator rights (you’ll need this to run some of the tests, and when running
the server in debug)

• Open the ./src/Evelyn.sln solution

• Build the solution

13

http://cakebuild.net/

Evelyn Documentation, Release 0.0.0

14 Chapter 6. Building the code

CHAPTER 7

Introduction

Evelyn is a feature toggling framework. It allows users to decouple software releases from the functional changes
within, reducing the risk of deployment and providing rollback functionality.

The Evelyn Stack consists of the following parts:

• A core framework providing the underlying feature toggling functionality, written in C# and targetting .NET
Standard 2.0

• A ReST API server and client that expose this functionality over HTTP, written in C# and targetting .NET
Standard 2.0. Sample hosts are provided for .NET Core 2.1.

• A management user interface, built on React/Redux/Node.

Evelyn has a modular architecture which allows for flexible deployment configurations and user extensibility. The
core framework is built around CQRS and Event Sourcing: implementations are provided for an in-memory event
store and for Greg Young’s Event Store; you can plug in your own event store integration.

This project is pre-release: things might break at any moment; APIs might change; it is insecure.

15

https://martinfowler.com/articles/feature-toggles.html
https://eventstore.org/

Evelyn Documentation, Release 0.0.0

16 Chapter 7. Introduction

CHAPTER 8

This documentation

This documentation is for the core framework, REST API and client.

For more information on the management UI head over to https://evelyn-management-ui.readthedocs.io/en/latest/.

17

https://evelyn-management-ui.readthedocs.io/en/latest/

	Overview
	Getting the code
	Using HTTPS
	Using SSH

	Running Evelyn
	Prerequisites
	Running in Docker using the command line
	Running in Docker using Visual Studio

	Using Evelyn
	Accessing the REST Server
	Using the Client
	Changing toggle state

	Using the management UI
	Building the code
	Building on the command line
	Building in Visual Studio

	Introduction
	This documentation

